

Eaton Analytical

The Standard Methods Validation Process Responding To **Requests For Including New Methods**

Andy Eaton, PhD, BCES Technical Director Joint Editorial Board-Chair

- Most of the methods are "tried and true" and either turned into EPA methods or came from EPA methods.
 - That does not mean however that all the "validation data" are present.
- There are "new" methods that do get added to Standard Methods and we have to have guidelines for determining that those methods are acceptable.

- Newer or different technologies designed to provide equivalent results to existing methods in the book.
 - Nitrate
 - TOC

Even if a method has been in the book for "generations", it doesn't mean there are not errors that can creep in (or were there to begin with) or suggestions for improvements.

Modifications must still be demonstrated to be effective, and from time to time the data in the method may need to be revisited (e.g. low level amperometric method for chlorine – 4500CI-E)

Standard Methods is not intended to be a backdoor way for manufacturers to gain credibility for new instruments.

Thus many years ago we developed some general guidelines for evaluation of new methods/semi-proprietary techniques.

- The proposed method must have appeared in a peer-reviewed journal (not to include conference proceedings) or be based upon peer-reviewed technology.
- The proposed method must provide comparative data with an approved method if there is a current method for the parameter(s) of the subject method.

- The proposed method must include data on accuracy and precision that conform to the current descriptions in Part 1000 and/or the appropriate x020 Section of Standard Methods.
- The proposed method must contain acceptable quality assurance/quality control procedures that conform as above.

- Approval by other standards developing organizations (SDOs) does not constitute grounds for inclusion in *Standard Methods,* but may be considered by the Joint Editorial Board (JEB) as an acceptable alternative to publication in peer reviewed literature.
- Any method submitted for inclusion in Standard Methods must first be reviewed and approved by the Joint Task Group (JTG) for that section, and then approved by the Part Coordinator and the JEB per current Standard Methods procedures.

- The representative of a commercial manufacturer who has submitted a method for consideration may serve on the JTG, but not as the chair; said JTG must have a majority of members that are not employees of the submitting company.
- Standard Methods does not typically endorse or adopt methods that use proprietary chemicals or devices for which technical knowledge regarding safety, health, technical basis for performance and similar information is not known.

Proprietary methods may be considered for unique applications, at the discretion of the JEB, if they fill a necessary demand in some specific application, such as rapid field methods, inline or instream testing, or high priority pollutants for which otherwise satisfactory methods are not available.

Applying These Criteria to Different Methods

Criterion	6810	5310E-inprocess	4500CL-E
analytes	PPCPs	тос	chlorine residual
type	new	equivalent	legacy method
peer reviewed method		TBD	\checkmark
peer reviewed technology		\checkmark	
comparative data	$\overline{\mathbf{A}}$	TBD	??
P&A data as per 020 sections	V	\checkmark	??
contains QA/QC			
Approved by others already?	WaterRF	no	\checkmark
JTG/PC/JEB approval	V	TBD	\checkmark
no manufacturer as chair	V	member	\checkmark
proprietary?	No	Yes	No
Urgent need?	Yes	No	Yes
eurofins			

Eaton Analytical

What are the Issues with Each of These Methods?

6810-PPCPs	5310E – TOC Supercritical oxidation	4500-CL-E Amperometric Titration
22nd edition new method; multi lab validation; LCMRL determinations	manufacturer new method; study plan reviewed by JEB/PC	Question about reliability of MDL in method; need to re-evaluate

- Method evaluated as part of WaterRF project 4167. Round robin study of PPCPs
- After determining that this was one of the better performing methods in multiple aqueous matrices, there was a multi-lab evaluation of LCMRL and IDOC
- Method written in SM format.
- Sent out to ballot, and received no negatives.
- All back up validation information is in 4167 report.

Eaton Analytical

- GE developed instrument
- Prepared study plan for review by SM JEB/PC
- Several iterations of study plan to make it more relevant for the "audience".
- Includes comparison with existing SM method (5310B).
- Final report to be submitted to SM for review
- Study in process

Outline of study plan follows

eurofins

•	- ·	
	SCWO	High-Temp
	(Sievers InnovOx)	Combustion (5310B)
	((Shimadzu I-Series)
Madea of Onematica	NIDOS TOS TO IS	
Modes of Operation	NPOC, TOC, TC, IC	NPOC, TOC, TC, TC
Concentration Range	0.5 – 50,000 mg/L	4µg/L – 30,000 mg/L
Matrix Types	Wastewater, drinking water,	Wastewater, drinking water, seawater
	seawater	_
Detection	Non-dispersive Infrared Radiation	Non-dispersive Infrared Radiation
	(NDIR)	(NDIR)
Inorganic Carbon (IC) Removal	Sparging after sample acidification	Sparging after sample acidification
Oxidation	Sample and reagents (acid &	Acidified sample is sent to a heated
	oxidizer) are heated and	combustion chamber (680°C)
	pressurized in a reactor to 375°C	containing an oxidative catalyst such
	and 3200 psi such that water	as platinum. Organic molecules are
	rand 5200 psi such that watch	as platinam. Organic molecules are
	reaches its chitcar point. The	טאועוצפע נט כערטטוד עוטאועפ.
	properties of supercritical water	
	combined with the presence of the	
	oxidizer reagent allow for efficient	
	oxidation of organics to carbon	
	dioxide.	

eurofins

- Introduction
- Method summary
- Instrument settings details
- Single lab validation
 - Precision and bias
 - Analysis of unknown samples
 - determination of method ruggedness by varying settings
- Direct Comparison with 5310B
- Collaborative testing

Large Suite of Matrices and Types of TOC

Matrix Types	Compounds	Standard Additions (mg/L)
Reagent water	KHP	0
Seawater/brine ¹	Sucrose	1
Wastewater ²	Acetic acid	5
Municipal Water ³	Urea	10
	Nicotinic acid	100
	Pyridine	5004
	SDBS	
	2-propanol	
	Octoxynol-9	
	Acetonitrile	
	<i>n</i> -butanol	
	Leucine	
	Tartaric acid	
	1,10-phenanthroline	
	1-glutonic acid	

eurofins

5 aliquots/5 replicates/ multiple matrices as below. Enough for statistical evaluation

Matrix Type	Compound	Spike addition
Reagent Water	KHP	0
Seawater/brine	Sucrose	1
Wastewater		5
Muni water		10
		100

- Similar to single lab study, but
 - 4 participating labs
 - 2 analysts per lab
 - 5 replicates per sample

Matrix Types	Compounds	Standard Additions (mg/L)
Reagent water	KHP	0
Seawater/brine ¹	Sucrose	1
Wastewater ²		5
Municipal Water ³		10
		100
		5004

🔅 eurofins

More initial testing than most of the methods that are in Standard Methods

But there was still a lot of back and forth on the study plan.

4500CI-E

- The method has a 10 ppb detection level listed, but it is such an old method that the validation data are difficult to track down, but ostensibly came from Hach originally.
- Labs using the method in NJ are unable to get down to a 10 ppb MDL, but changing that to 20 ppb (achievable) is a technical change, so we need data.
- NJ will have multiple labs do MDL determinations and submit to SM for review.

- We are revisiting sections 1030 and 1040 to try to develop some more standardized validation guidelines. (Thanks William Lipps for spearheading that....)
- This will help differentiate between the different scenarios, particularly when it comes to approving methods for potential use in compliance monitoring (remember that compliance monitoring is not the only thing that Standard Methods is used for).

- One size does not fit all when it comes to method validation for Standard Methods.
- Having a large number of legacy methods can be challenging.
- The newer a method, the more likely it is to have some pretty good validation.
- The Standard Methods balloting system also helps to identify issues (after the fact).

Andy Eaton andyeaton@eurofinsus.com 626.386.1125

Eurofins Eaton Analytical, Inc. www.eurofinsus.com

Eaton Analytical